skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mills, Gary"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Morel mushrooms (Morchella, Pezizales) are highly prized edible fungi. Approaches to cultivate morels indoors in pasteurized composted substrates have been successful for Morchella rufobrunnea. We used DNA amplicon sequencing of the Internal Transcribed Spacer (ITS) ribosomal DNA and 16S rRNA gene to follow bacterial and fungal communities in substrates during indoor morel cultivation. Our goal was to determine changes in microbial communities at key stages of morel cultivation, which included primordia development, fundament initiation, differentiation and maturation. Additionally, we compared microbial communities between trays that successfully fruited to those that produced conidia and primordia but aborted before ascocarp formation (non-fruiting). The prokaryotic community was dominated by Firmicutes belonging to Bacillus and Paenibacillus with a lower abundance of Flavobacteria. At earlier stages, the fungal community was dominated by Pezizomycetes including Morchella and other species, whereas, later in the cropping cycle Sordariomycetes dominated. Additionally, differences were observed between trays with successful fruiting, which were dominated by Gilmaniella; compared to trays that did not fruit, which were dominated by Cephalotrichum. Our findings inform understanding of microbial community dynamics during morel cultivation, and show that fungal genera, such as Gilmaniella, and prokaryotic genera, such as Bacillus, are abundant in substrates that support M. rufobrunnea fruiting. 
    more » « less